CHAPTER 7

MODEL FOR TUMOUR INVASION AND
METASTASIS

7.1 Introduction

The development of a primary solid tumour begins with a single normal cell
becoming transformed as a result of mutations in certain key genes. This transformed cell
differs from a normal one in several ways, one of the most notable being its escape from
the body’s homeostatic mechanisms, leading to inappropriate proliferation. An individual
tumour cell has the potential, over successive divisions to develop into a cluster (or
nodule) of tumour cells. Further growth and proliferation leads to the development of an
avascular tumour consisting of approximately 10° cells. This cannot grow any further,
owing to its dependence on diffusion as the only means of receiving nutrients and
removing waste products. For any further development to occur the tumour must initiate
angiogenesis — the recruitment of blood vessels. The tumour cells first secrete angiogenic
factors which in turn induce endothelial cells in a neighbouring blood vessel to degrade
their basal lamina and begin to migrate towards the tumour. As it migrates, the
endothelium begins to form sprouts which can then form loops and branches through
which blood circulates. From these branches more sprouts form and the whole process
repeats forming a capillary network which eventually connects with the tumour,
completing angiogenesis and supplying the tumour with the nutrients it needs to grow

further. There is now also the possibility of tumour cells finding their way into the
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circulation and being deposited in distant sites in the body, resulting in metastasis. The
complete process of metastasis involves several sequential steps, each of which must be
successfully completed by cells of the primary tumour before a secondary tumour (a
metastasis) is formed. A crucial part of the invasive /metastatic process is the ability of
the cancer cells to degrade the surrounding tissue or extracellular matrix (ECM) (Liotta et
al, 1983; Lawrence & Steeg, 1996). This is a complex mixture of macromolecules, some
of which like the collagens are believed to play a structural role and others such as
laminin, fibronectin and vitronectin are important for cell adhesion, spreading and
motility. We note that all of these macromolecules are bound within the tissue i.e. they
are non-diffusible. The ECM can also sequester growth factors and itself be degraded to
release fragments which can have growth-promoting activity. Thus, while ECM may
have to be physically removed in order to allow a tumour to spread or intra or
extravasate, its degradation may in addition have biological effects on tumour cells. In
this chapter, we introduced a tumour invasion and metastasis model which include
tumour cells, extra cellular matrix (ECM) and matrix degradation enzyme (MDM). This

is extended model from the previous angiogenesis model.

7.2 Mathematical background

The model presented in this chapter is a continuum, deterministic model (based on a
system of reaction-diffusion-chemotaxis equation). We choose to focus on three key
variables involved in tumour cell invasion, namely: tumour cells (denoted by n), ECM
(denoted by f) and MDE (denoted by m). Each of the three variables is a function of the

spatial variable x and time t.
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The conservation equation for the tumour cell density n is

% VA3 g + Jnanes) = 0 (7.1)

where J,..,, = ynVf is the haptotactic flux with » > 0is the haptotactic coefficient and

J D(f,m)vn is the random motility flux.

random —
Hence, the partial differential equation governing tumour cell motion (in the absence of

cell proliferation) is,

& —vAo(f, mpvn)- 2v.avF) (7.2)

The ECM contains many macromolecules including fibronectin, laminin and collagen
which can be degraded by matrix-degrading enzymes (MDEs) (Chambers & Matrisian,
1997). We assume that the MDEs degrade ECM upon contact and hence the degradation

process is modelled by,

(7.3)

2|2
Il
|
5

where ¢ is a positive constant.
Active MDEs are produced by the tumour cells, diffuse throughout the tissue and

undergo decay. The equation governing the evolution of MDE concentration is given by:
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%n =D, V’m+g(n,m)—h(n,m, ) (7.4)

where D, is a positive constant. g is a function the production of active MDE and h is the

function the MDE decay. For simplicity, we assume that there is a linear relationship
between the density of tumour cells and the level of active MDE in the surrounding

tissues. So these functions were taken to be:

g=n (MDE production by tumour cells)

h=Am (natural decay)

Hence, the complete system of equations describing the interactions of the tumour cells,

ECM and MDEs is given by

on_ D,VZn— 4v.(nvf)

ot

of

— =—dmf 7.5
p (7.5)
%n= D, V?m+ zn—Am

Non-dimensionalise Eq. (7.5) by setting
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and dropping the tildes for notational convenience, we obtain the scaled system of
equations:

%=dnvzn—w.(an) (7.6)
of
— = —nmf 7.7
P/ (7.7)
om )
—=d,V'm+on-pgm (7.8)
where dn:&, 7:&, n=m,o, dm:&, a = and p=174. The initial
D D D m

0

conditions are:

n(x,0)= exp( XZ] (7.9)
&

f(x,0)=1—0.5exp£— X—zj

(7.10)
&

&

m(x,0) = 0.5exp(— X—ZJ

(7.11)

The approximate solutions of Egs. (7.6-7.8) are obtained by integrating each Egs. (7.6-

7.8) once with respect to t and using the initial condition. Hence we obtained:
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(x,t)=n(x)+ dnj—dt - ja” a (7.12)
f(x,t)= f(x)—njmfdt (7.13)
m(x,t) (7.14)

In Egs. (7.12-7.14), we assume n(x), f(x) and m(x) are bounded for all x in

J=[0,T](T eR) and [t—7z/<m',vYO<t,r <T.The terms

2 2 2
%,%.%,n%,Fl(mf):mf,zTrzn,Fz(n):n and F,(m)=m are Lipschitz

continuous with

a n azn*
e x| <Lfn-n
on of on* of * «
2 2
nZXI— aaf*<L|nf—n*f*|
X

IF.(m, f)—F (m*, f *) < L,Jmf —mf %,

o’m ~ o*m*
ox?

< LgJm-m¥,

IF,(n)-F,(n*)] < Lgjn—n*,
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[Fs(m) = Fy(m*) < Ly jm —m*

and

a=T(mL+mL, +mL,+mL, +m'L, +m'L, +m'L,)

p=1-T(l-a) (7.15)

7.3. Adomian Decomposition Method (ADM)

The Adomian decomposition method is applied in Egs. (7.6 — 7.8):

Ln=d on_ @qjtnazf

R (7.16)
Lt =—mt (7.17)
Lm=d o*m

(Mm=dy, —7 +an-/m (7.18)

o . . . . ot
where L, =i integrable differential operator with L = J; (.t .

Operating on both sides of Egs. (7.16 — 7.18) with the integral operator L™ lead to

n(x,t)=n(x,0)+d, Lt‘l@%?j AL N ) LN ()] (7.19)
f(x,t)=f(x,0)—rL, [Ny (m, f)] (7.20)
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m(x,t)=m(x,0)+ L;l(dm ax_zj + L, fan - pm] (7.21)

on of
h N.(n, f)=—— 7.22
where (n, 1) > o0 (7.22)
0% f
Nz(n’ f): n X2 (7.23)

are the nonlinear terms. The solutions n(x,t), f(x,t) and m(x,t) can be decomposed by

an infinite series as follows (Adomian, 1994):

n(x,t) = 2ni(x,t) (7.25)
f(x,t)=> f(x1) (7.26)
m(x,t) = Z:;mi (x,1) (7.27)

where n;(x,t), f,(x,t) and m,(x,t)are the components of n(x,t), f(x,t) and m(x,t) that

will elegantly determined. The nonlinear term N(x,t)is decomposed by the following

infinite series:

Nk(x,t):iAk, , k=1,2,3 (7.28)

where A, is called Adomian’s polynomial and define by:
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0 i=0 i=0

Ay =%{:_/;Nk(i’yni’iﬂi fi’iﬂimij:| , 120 (7.29)

From the above consideration, the decomposition method defines the components n, (x,t)

, f,(x,t) and m;(x,t)for i >0 by the following recursive relationships:

For n;(x,t)

ny(x,t)=n(x,0)

N (% t)= j[d %—y{a,. (n, f)+ A, (n, f)}}dr, 120 (7.30)
For f(x,t),
f,(x,t)= f(x,0)
f.ﬂ(x,t):—nj[Ag,.(m,f)]dr, 120 (7.31)
For m,(xt),

m, (x,t) = m(x,0)

mm(x,t):_ﬂdm %-Fan' — pm, }dr, >0 (7.32)

0
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7.4 Homotopy Perturbation Method (HPM)

To solve Eqgs. (7.6 — 7.8) with the HPM method, we construct the following homotopy:

on on on o’n  on of 0% f
H(n f,p)=-p) D-Lo |y g N g o0, NA, -0 7.33
0 19)=-p[ - D) -0, 20, X o2 &
of of of
H,(f,mp)=0-p) ——-—L|+p —+n$mf |=0 7.34
(t.m,)= 0= pf G- T2 J o Gt 730
om om om o*m
Hy(mn, p)=@1-p| -2 |+ p| S2—d, 0 —an+ fm | =0 7.35
o(mn,p)=(-p) = &j p(at 7 ﬂmj (7.35)
or
on  on o’n  on of o*f  on
H(nf,p)=—-——2+p -d,—+y—.— +—1=0 7.36
3 )&&("827/&& o atJ (7.36)
0 afO
Hz(f,m,p)————+p(nmf+—):0 (7.37)
2
Hg(m,n,p)—a—m—ag0 (—dma T_Oerﬁer mO]zO (7.38)
In HPM, the solution of Egs. (7.36 — 7.38) are expressed as power series in p;
n(x,t)=n,(x,t)+ pn,(x,t)+ p?n,(x,t)+ p3ny(x,t)+... (7.39)
f(x,t)=f,(x,t)+ pf,(x,t)+ p? f,(x,t)+ p>f,(x,t)+.. (7.40)
(7.41)

m(x,t)=m, (x,t)+ pm,(x,t)+ p?m,(x,t)+ p>my(x,t)+...

100



where pe[0] is an embedding parameter and n_, f,and m, the arbitrary initial

approximation satisfying the given initial condition. As p approaching to 1, we obtained

n(x,t):lginln:n0+n1+n2+n3+ ...... :iZ:O:ni (7.42)
f(x,t):lginlf:f0+fl+f2+f3+ ...... :g‘f‘ (7.43)
m(x,t)zlginlm:mo+ml+m2+m3+ ...... =>m (7.44)

Substituting Egs. (7.42 — 7.43) into Eq. (7.36):

0 on 0°
a(n0 +pn, + p°n, + pn, +'")_EO+ p{—dn 8)(—2(n0 +pn, + p°n, + pn, +)

0 0
+7&(n0 +pn, + pzn2 + p‘°’n3 +...)&(f0 + pf, + p? f, + p® f, +)

0° on
+7{n, + pn, + p2n, + p°n, +.--)8X_2(fo +pf,+ p*f, + p°f, +}FE0} ~0

(7.45)
Substituting Egs. (7.43 — 7.44) into Eq. (7.37):
0 of
E(fo +pfy+ p*f, + p°f; +--')_EO+
p{"(m" +pmy + p*m, + p°m +.Jfo + Pl + p2F, + P+ )+ %} -0
(7.46)

Substituting Egs. (7.42 - 7.44) into Eq. (7.38):
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%(m0 +pm, + p’m, + p°m, +...)—

—oz(n0 +pn, + p°n, + pn, +...)+ ﬂ(m0 +pm, + p’m, + p°m, +...)+

82
{—dm a7(m0 +pm, + p’m, + p°m, +)

amo}zo
ot

(7.47)

Equating the coefficients of the terms in Egs. (7.45 — 7.47) with the identical powers of p,

we obtained:

From Eq. (7.45):

po-%_%—o
ot ot
L. on, o’n, on, ofy
pri_t-d,—5+7
ot OX 8 6‘X
,  on, o’n,  on, of,
: -d + —+
Poa T T o ax
on o°n on, of
3.9 2 | 0“2
P ot " ox? 4 OX OX
p4 . an4 _dn aznZS ano %_'_
ot OX OX OX
+n3%:0
OX
From Eq. (7.46) :
po:%_%zo
ot ot
pl:%+nmofo+—°:0

ot

2
f

0a 2O +%:0

OX ot
O A A
P S G
%@ on, of, 82f
X ox | ox ox 7n0
on ot | ony of, | an, of,
OX OX OX OX ax ax

0 (7.48)
82f 0 f
7’n1 2 8X20 =0
0? f 02 f 0? f
}’ﬂo 7ﬂ1 7ﬂz
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of
:Ez+77m0 f,+nm f, =0 (7.49)
p° :%Hymo f, +nm f, +nm,f, =0

.. O,

p .E+77m0f3+77m1f2+77m2f1+77m3f0 =0

From Eq. (7.47) :

p: 5(;“1 —d, a;XTO an, + fm, +8;0 =0

0?: ag'tz —d_ 6;XT1 —an, + fm, =0 (7.50)
p®: 823 ~d_ 6;22 —an, +pfm, =0

p* 824 —d, 6;23 —an, + fm, =0

Solving Egs. (7.48 — 7.50), we will have the solution of Egs. (7.6 —7.8).

7.5 Existence and convergence of ADM and HPM

Theorem 7.1: Let 0 <« <1, then Egs. (7.6 - 7.8) have a unique solution.

Proof:

103



() Let n and n” be two different solutions of Eq. (7.12) then

j-an an
. X OX  OX  OX

]
Al s

of| 2220 e

<T(M'L, +m'L, +m'Ly Jn—n*

* *
(anaf on* of jdt

*

‘n—n

@i_@n o= dt +

oot L o%f*
n J—
OX OX  OX  OX 2

8)(2

=ajn—n*
From which we get (1-a)n—n*<0. Since 0 <« <1, then [n—n*=0. Implies n=n*

and completes the proof.

(1) Let f and f~be two different solutions of Eq. (7.13) then

t

=] 7y ) o £ <)z
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From which we get (1-a)f —f*¥<0. Since 0<a <1, then |f —f*¥=0. Implies

f = f * and completes the proof.

(111) Let m and m”be two different solutions of Eq. (7.14) then

Ha m_ o°m }dtwj n)—F,(n")t
- B[ (Fy(m)— Fy (m"

0

m—m’|=

ol 2m  o*m* i i

s|dm|.[{a n_g'm }dt+|a|.[|F2(n)— F, (n*)dt + 1] (0)— F. ()t
5|l OX OX 0 5

<T(m'Lg +m'Lg +m'L, Jm—m’

=ajm-m*

From which we get (1—a)m-m*<0. Since 0<a <1, then [m—m*=0. Implies

m=m™* and completes the proof.

1 I
i=0 i=0

Theorem 7.2: The series solution n(x,t =Zn f(x,t =Zf and

=>'m(x,t) of Egs. (7.16 — 7.18), respectively using ADM converges if

i=0

O<a<l,,|n(xt) <o, [f,(x,t] <oo,m(x,t)<oo.
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Proof: Denote as (C[3]]) the Banach space of all continuous functions on J with the
norm | f(t)] = max Vv, e J. Define the sequence of partial series {S,}; LetS,and S, be
arbitrary partial sums with n>m.We prove that S is a Cauchy sequence in this Banach

space:

() For Eq. (7.16)

S,—-S

ol

IS, =S| = max
Vtel

= Mmax
Vted

n t 82 af
dn i dt—y|—.—dt—y
Zk“l( ox? }/-[ OX

= MmaX
Vted

o° f
aXZ

155 Jt—yft“zﬂ. o

=k

1=k+ 0
_182 J
i=k

From Kalla (2008), we have

= MmaX
Vted

dnj[

n-1 82ni ) )
Z ox2 =G, (Sn—l)_Gl (Sm—l)
i—k

Eon, o
z T~ 22(Sn—1)_ Gzz(smfl)
X X

n-1 62 fi ) )
Zni X2 =G, (Sn—l)_GS (Sm—l)

So
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IS, — S| = max an[[6,2(5,)- G2 (5, Mt~ #[[6:2(5,4)~ 6,2 (5,. )t - #[[6.2(5,.,)~ G2 (5, )t

t t t
< |dn|HGl2 (Sn—l)_ G:L2 (Sm—ljdt + |7|HG22 (Sn—l)_ GZZ (Sm—l th +|7|_”G32 (Sn—l)_ GBZ (Sm—l th
0 0 0

<aS, =S,
(7.51)

()] For Eq. (7.17)

S0 =S| = maxis, =S|

vted

= max >, fi(x,t*

i=k+1

i=k+1

= max [ n.[mfdtJ

t/n-1
ﬂgg(—yyj'( m, fijdt

From Kalla (2008), we have

n—.

Zm. fi =Fi(Shs) - Fi(Sps)

So

t

IS, =S| = max|- I s Jt

Vted
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t
<[ IF.(Sy2)~ FulSp el
0
Sa”Sn _Sm”
(1)  For Eq. (7.18)

IS, — S| =max|S, —S,|

vtel

= max imi (x,t)(

Vted |.

n [t a%m t t
=max| J.dm N dt+a.[nidz—ﬂj'midt]
0 0

Ve iS5G\ OX

t / ne

o Jroel(Sn el §em)
- dt+ o n, [dt—p4 m, |(dt
ox? j '([ K '([ i=k

= maXx
vtel

t(/n-1
dm! .Zk:

From Kalla (2008), we have

n-1 aZm_
Z 6X2I :G42(Sn—l)_G42(Sm—1)
i=k

So

(7.52)
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Vted

Is, S ||—maxdmj[G42(Snl ml]dt+aj st - ﬁj
0

t t t
< |dm|”G42(Sn—1)_ G42(Sm—ljdt + |a|I|F2 (Sn—l)_ Fz (Sm—1ldt +|:B|J|F3 (Sn—l)_ Fs (S
0 0 0

<alS, =S,

For Eq. (7.51), letn=m + 1, then

[Snia =Snll < S =S

m+1

<a?||Syy = Snl|

<a™|S, -S|

From the triangle inequality, we have

”Sn _Sm” < ”S _Sm||+||s Srn+1||+ """ +||Sn - Sn—ln

m+1 m+2

< (am +a™ + +0¢”‘m_l)|S1 —S,|

o Jot

(7.53)
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" 1_ n-m
<a [ - j||nl(x,t)|

Similar steps for Eq. (7.52)

mn 1_ n—m
o[ i)

Similar steps for Eg. (7.53)

l-«

<[ (e

Since 0 < a <1, we have (1—a"’m)< 1,

am
then S, —Sal < 1—g ny(x.) (7.54)
am
IS, = Sull < ;= max| f.(x.t) (7.55)
am
I8, ~Sal < 7 maxim, 1) (756)
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But |n,(x,t), f,(x,t), m,(x,t) <oo,50 as m—>oothen |S,—S,|—0. We confidence that

{S,}is a Cauchy sequence in C[J], therefore the series is converges and the proof is

completed.

Theorem 7.3: If |n,(xt]<L|f,(x,t]<1 |m,(x,t]<1 then the series solution

n(x,t):Zni(x,t), f(x,t)= fi(x,t),m(x,t)zimi(x,t) of Egs. (7.6-7.8) converges

o0 o0
i=0 i=0 i=0

to the exact solution by using HPM.

Proof:

()] For Eq. (7.6)

We set,

n+1

(X t)= gni(x,t)
So,
[A0a (1) =4, (x. 8] <[, +n, 4,
=[n,|
0% f

k—m-1
2

of

IA

)dt

r]k—m—l

2
a nm—k—l
aXZ

r:z_(;(|dn| !

Loan
dt +|y kem-l
i

t
k—-m-1 dt
el
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Thus
ni;,llm(x,t)— g, (1) < (m 1) f (x)nf(;a”

Since 0 < a <1, therefore [imn, (x,t)=n(x,t)

n—o0o

(1  For Eq.(7.7)

We set,

n+1

.00)= 3 1,600
So,
|¢n+l(xit)_ ¢n (X’t1 = |¢n + fn - ¢n|

=il

m-1 t
< Z|77|J.|mkfm71 fk,m,1|dt
k=0 ¢

Thus

gll¢n+1(x,t)— ¢, (x,t)| < (m—2)a f (x)gan

Since 0 < a <1, therefore |im f, (x,t)= f(x,t)

n—oo

112



(1 For Eq.(7.8)

We set,
n
=>"m(x,t)
i=1
n+l
n+l Zm X t
So,

|¢n+1(x’t)_ ¢n (X’ t] = |¢n +m, — ¢n|

:|mn|

mkl

<Z<|dm| I

dt+|a|_[|nk s |o|t+|ﬁ|j|mk )t
Thus

Z||¢n+1xt ¢, (x,t)| < (m- 1)a|f(x]§(;a”

Since 0 < a <1, therefore |im m, (x,t)=m(x,t)

nN—oo

7.6 Numerical experiment

In this section, we compute numerically Egs.(7.6 — 7.8) by the ADM and HPM methods.

113



7.6.1 ADM method
From the ADM formula Eq.(7.29), we can obtain the first three terms of the Adomian

polynomials:

Al,O = Nl(nO’ fo)

_n
OX OX
2x?
2 _2X°
- e (7.57)
&

Az,o = Nz(nu fo)

0% f,
o ox?
¢
¢ 2
e (y%j (7.58)
As,o = Ns(mm fo)
= (mo fo)
1 X2 1 X2
= Ee{l—zes} (7.59)

By the recursive formula in Egs. (7.30 — 7.32), we can obtain directly the components of

n;, fi and m; (see Appendix C)

From Eqg. (7.30):
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x2

n,=e ¢

= Jla. S m o

X

2x° o]l
={{2d{1 :|+7/e s {1— }}—e :
' & &

n, =
X2
e[:

2 ﬁ 2 2
—]/ﬁli—l—l-zx ver X )]_y(l_zx J{Zdn(l_z
& & & & &

From Eq. (7.31)

From Eq. (7.32)

_ : o]
] { 4, <d_{3_ei_z[gxz_2iﬂ+e : H
& & & & &
2 221 ax|d )
<_27’/1X2|:e ‘ —1}+—X{—”(3X—LJ—;43 ; (SX——
& & & &

43
&

3
3—8L+x

|

&

(7.60)

(7.61)

(7.62)

(7.63)

(7.64)

(7.65)
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m =%e ’ (7.66)

a2 a2 aem

m,= Hd{dm<§(l%]+4(l%+%)> %(1—%}(20; ﬂ)}}+
) e

(7.68)
7.7.2 HPM method

Following the HPM method, we can obtain the first three terms of He polynomials.

From Eqgs. (7.48 — 7.49):

=€’ (7.69)

2x2 ol
—{{Zd{l—i}+7e : {1—i}—e : (7.70)
& & &
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g g [ ex® 2 )] =22 8x® 4x*
n2=j d,—te ¢ —”{3————[3x2——ﬂ—e ’ H3——j+3xz——} -
0 & & & & & & &

2 22y 2 s ) ()|
—]/Xe £ ﬁtxe & [1+e & ]_te & {_”( X_—j—]/e ¢ [SX—]}Xe ¢
& & & & & &

(7.71)
From Eq. (7.49):
x2
1 2
f=1-"e ¢ (7.72)
2
¢ = 1 =
flz—J. Tee|1-Zec T
ol 2 2
1 2 ¢ 2
—1->e+ |Te- (7.73)
2 2

t =, = = =
fzzf nleg Uy 1—1e8 t+e ¢ (dm(l—ZXZ)—a+ﬁ)t 1—1e5 T
ol |2 2 2 2 2

117



[1—%ezJ{%ez —(dm(1—2x2)—a+§j]£;e: (7.74)

1 AN
m,=—-¢€ ¢ 7.75
0= (7.75)
t —x= 2
ml:—je ¢ [d—m(l—zi]—owﬁ}dr
5 g &
d 2x° -
= — —m( ——j—a+ﬁ}te ¢ (7.76)
¢ & 2

m, = j - dmte_:‘{— dm<3(1—£j + 4(1—ﬁ+§j> +1(1—Kj(2a —ﬁ)}—
0 & & & & & &
atez{ﬁpﬁ}ﬁz@ﬁj}%z{dm@_zﬁ)_mﬁﬂdf
& & & 2
m,= —Hdm{—dm<g(l—£j+4[l—ﬁ+¥]> +£(l—£}(2a —ﬂ)}}+
& & & & & &
a{%@_gjﬂe:@gj}_ﬂ[dm(l_2xz>_a+gﬂge:

(7.77)

It is obvious that the first three terms approximate solutions (Egs. (7.60 — 7.68)) obtained

using ADM are the same as the first four terms (Egs. (7.69 — 7.77)) of the HPM.
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Figure 7.1. The ratio convergence test applied to the series coefficients (tumour) for

ADM and HPM as a function of the number of terms in series.
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Figure 7.2. The ratio convergence test applied to the series coefficients (ECM) for ADM

and HPM as a function of the number of terms in series.
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Figure 7.3. The ratio convergence test applied to the series coefficients (MDE) for ADM

and HPM as a function of the number of terms in series.

ADM and HPM provide analytical solution in terms of an infinite power series (see Egs.
(7.25 — 7.27) for ADM and Egs. (7.42 — 7.44) for HPM). The series consists of both
positive and negative terms, although not in a regular alternating fashion. The ratio test
was applied to the absolute values of the series coefficient. This provides a sufficient

condition for convergence of the series for a space interval AX in the form

a‘m+1

am

lim

m—o0

< _
AX (7.78)

However, the approach in this study was to replace Eq. (7.78) with

1
< —

AX (7.79)

am+1

am

lim

m—M

where M is a large constant. The behavior of the function f(m) = |am+1 /anm| for increasing
values of m was then observed as presented in Figures (7.1 — 7.3). It is clear from these
figures that the ratio f(m) decays as m increases, obviously indicating that the series is
convergent.

Figures (7.4 — 7.7) show four snapshots in time of the tumour cell density, ECM density
and MDE concentration. The ECM profile shows clearly the degradation by the MDEs.
As the MDEs degrade the ECM, the tumour cells invade via combination of diffusion and

haptotaxis.
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Figure 7.4. One dimensional ADM and HPM solution of the system (7.6 — 7.8) with

constant tumour cell diffusion showing the cell density, MDE concentration and ECM

density att = 0.
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Figure 7.5. One dimensional ADM and HPM solution of the system (7.6 — 7.8) with
constant tumour cell diffusion showing the cell density, MDE concentration and ECM

density att = 1.
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Figure 7.6. One dimensional ADM and HPM solution of the system (7.6 — 7.8) with
constant tumour cell diffusion showing the cell density, MDE concentration and ECM
density at t = 10.

125



0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.4

0.5

0.6

W
0.7

W
0.8

B
0.9

[EEY

=@=—Tumour
==ECM
== MDE

Figure 7.7. One dimensional ADM and HPM solution of the system (7.6 — 7.8) with

constant tumour cell diffusion showing the cell density, MDE concentration and ECM
density at t = 20.
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7.7 Summary

In this chapter, we have modeled in a simple but effective manner using ADM and HPM.
The solutions obtained are in convergent series form with easily computable terms.
Comparison with the decomposition method shows that the homotopy perturbation
method is a promising tool for finding approximate analytical solutions to strongly
nonlinear problems since HPM does not involve the Adomian polynomials. Our results

are in a good agreement with other models which being numerically solved.
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