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CHAPTER  7  
 

 

MODEL FOR TUMOUR INVASION AND 

METASTASIS 
 

 

 

7.1 Introduction 

 

           The development of a primary solid tumour begins with a single normal cell 

becoming transformed as a result of mutations in certain key genes. This transformed cell 

differs from a normal one in several ways, one of the most notable being its escape from 

the body’s homeostatic mechanisms, leading to inappropriate proliferation. An individual 

tumour cell has the potential, over successive divisions to develop into a cluster (or 

nodule) of tumour cells. Further growth and proliferation leads to the development of an 

avascular tumour consisting of approximately 10
6
 cells. This cannot grow any further, 

owing to its dependence on diffusion as the only means of receiving nutrients and 

removing waste products. For any further development to occur the tumour must initiate 

angiogenesis – the recruitment of blood vessels. The tumour cells first secrete angiogenic 

factors which in turn induce endothelial cells in a neighbouring blood vessel to degrade 

their basal lamina and begin to migrate towards the tumour. As it migrates, the 

endothelium begins to form sprouts which can then form loops and branches through 

which blood circulates. From these branches more sprouts form and the whole process 

repeats forming a capillary network which eventually connects with the tumour, 

completing angiogenesis and supplying the tumour with the nutrients it needs to grow 

further. There is now also the possibility of tumour cells finding their way into the 
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circulation and being deposited in distant sites in the body, resulting in metastasis. The 

complete process of metastasis involves several sequential steps, each of which must be 

successfully completed by cells of the primary tumour before a secondary tumour (a 

metastasis) is formed. A crucial part of the invasive /metastatic process is the ability of 

the cancer cells to degrade the surrounding tissue or extracellular matrix (ECM) (Liotta et 

al, 1983; Lawrence & Steeg, 1996). This is a complex mixture of macromolecules, some 

of which like the collagens are believed to play a structural role and others such as 

laminin, fibronectin and vitronectin are important for cell adhesion, spreading and 

motility.  We note that all of these macromolecules are bound within the tissue i.e. they 

are non-diffusible. The ECM can also sequester growth factors and itself be degraded to 

release fragments which can have growth-promoting activity. Thus, while ECM may 

have to be physically removed in order to allow a tumour to spread or intra or 

extravasate, its degradation may in addition have biological effects on tumour cells.  In 

this chapter, we introduced a tumour invasion and metastasis model which include 

tumour cells, extra cellular matrix (ECM) and matrix degradation enzyme (MDM). This 

is extended model from the previous angiogenesis model.  

 

7.2 Mathematical background 

 

    The model presented in this chapter is a continuum, deterministic model (based on a 

system of reaction-diffusion-chemotaxis equation). We choose to focus on three key 

variables involved in tumour cell invasion, namely: tumour cells (denoted by n), ECM 

(denoted by f) and MDE (denoted by m). Each of the three variables is a function of the 

spatial variable x and time t. 
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The conservation equation for the tumour cell density n is 

 

                                                       0. 



haptorand JJ

t

n
                                          (7.1) 

 

where  fnJ hapto     is the haptotactic flux with 0 is the haptotactic coefficient and 

  nmfDJ random  ,  is the random motility flux.  

Hence, the partial differential equation governing tumour cell motion (in the absence of 

cell proliferation) is, 

 

                                                     fnnmfD
t

n





.,.                                    (7.2) 

 

The ECM contains many macromolecules including fibronectin, laminin and collagen 

which can be degraded by matrix-degrading enzymes (MDEs) (Chambers & Matrisian, 

1997). We assume that the MDEs degrade ECM upon contact and hence the degradation 

process is modelled by, 
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where  is a positive constant. 

Active MDEs are produced by the tumour cells, diffuse throughout the tissue and 

undergo decay. The equation governing the evolution of MDE concentration is given by: 
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where mD is a positive constant. g is a function the production of active MDE and h is the 

function the MDE decay. For simplicity, we assume that there is a linear relationship 

between the density of tumour cells and the level of active MDE in the surrounding 

tissues. So these functions were taken to be: 

 

                                             ng      (MDE production by tumour cells) 

                                             mh      (natural decay) 

 

Hence, the complete system of equations describing the interactions of the tumour cells, 

ECM and MDEs is given by 
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Non-dimensionalise Eq. (7.5) by setting 
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on

n
n ~ ,             

of
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and dropping the tildes for notational convenience, we obtain the scaled system of 

equations: 
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where 
D
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n
  and   . The initial 

conditions are: 
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The approximate solutions of Eqs. (7.6-7.8) are obtained by integrating each Eqs. (7.6-

7.8) once with respect to t  and using the initial condition. Hence we obtained: 



96 

 

 

       


















t t t

dt
x

f
ndt

x

f

x

n
dt

x

n
dnxntxn

0 0 0

2

2

2

2

.,                                              (7.12) 

    

t

mfdtxftxf
0

,                                                                                               (7.13) 

      





t t t

mdtndtdt
x

m
dmxmtxm

0 0 0

2

2

,                                                         (7.14) 

 

In Eqs. (7.12-7.14), we assume    xfxn ,  and  xm  are bounded for all x  in 
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    ** 733 mmLmFmF   

 

and  
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7.3.  Adomian Decomposition Method (ADM) 

 

The Adomian decomposition method is applied in Eqs. (7.6 – 7.8): 
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where 
t

Lt



  is integrable differential operator with  dtL

t
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0
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Operating on both sides of Eqs. (7.16 – 7.18) with the integral operator 1L  lead to  
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are the nonlinear terms. The solutions  txn , ,  txf ,  and  txm ,  can be decomposed by 

an infinite series as follows (Adomian, 1994): 
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where  txni , ,  txf i ,  and  txmi , are the components of  txn , ,  txf ,  and  txm ,  that 

will elegantly determined. The nonlinear term  txN , is decomposed by the following 

infinite series: 
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where klA is called Adomian’s polynomial and define by: 
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From the above consideration, the decomposition method defines the components  txni ,

,  txf i ,  and  txmi , for 0i  by the following recursive relationships: 
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7.4  Homotopy Perturbation Method (HPM) 

 

To solve Eqs. (7.6 – 7.8) with the HPM method, we construct the following homotopy: 
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In HPM, the solution of Eqs. (7.36 – 7.38) are expressed as power series in p; 
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where  1,0p  is an embedding parameter and on , of and om
 

the arbitrary initial 

approximation satisfying the given initial condition. As p approaching to 1, we obtained 
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Substituting Eqs. (7.42 – 7.43) into Eq. (7.36): 
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Substituting Eqs. (7.43 – 7.44) into Eq. (7.37): 
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Substituting Eqs. (7.42 - 7.44) into Eq. (7.38): 
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Equating the coefficients of the terms in Eqs. (7.45 – 7.47) with the identical powers of p, 

we obtained: 
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Solving Eqs. (7.48 – 7.50), we will have the solution  of Eqs. (7.6 – 7.8).  

          

 

7.5  Existence and convergence of ADM and HPM    

 

Theorem 7.1:  Let 10  , then Eqs. (7.6 - 7.8) have a unique solution. 

  Proof:   
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(I) Let n  and *n be two different solutions of Eq. (7.12) then  
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From which we get   0*1  nn . Since 10  , then 0*  nn . Implies *nn    

and completes the proof. 

 

(II) Let f  and *f be two different solutions of Eq. (7.13) then  
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From which we get   0*1  ff . Since 10  , then 0*  ff . Implies 

*ff    and completes the proof. 

 

(III) Let m  and *m be two different solutions of Eq. (7.14) then  

 

    

    
























t

tt

dtmFmF

dtnFnFdt
x

m

x

m
dm

mm

0

*

33

0

*

22

0

2

*2

2

2

*





 

               

        


















ttt

dtnFnFdtnFnFdt
x

m

x

m
dm

0

44

0

22

0

2

2

2

2

**
*



   

               

  *

765 ''' mmLmLmLmT 

 

               

*mm 
                                                                                       

 

From which we get   0*1  mm . Since 10  , then 0* mm . Implies 

*mm    and completes the proof. 

 

Theorem 7.2: The series solution    
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Proof: Denote as   .,JC  the Banach space of all continuous functions on J with the 

norm   Jtf t  max . Define the sequence of partial series  nS ; Let nS and mS be 

arbitrary partial sums with .mn  We prove that nS is a Cauchy sequence in this Banach 

space:    
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From Kalla (2008), we have 
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(I) For Eq. (7.17) 
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(II) For Eq. (7.18) 
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Theorem 7.3: If   ,1, txnm   ,1, txfm   ,1, txmm  then the series solution 

   





0

,,
i

i txntxn ,    





0

,,
i

i txftxf ,    





0

,,
i

i txmtxm  of Eqs. (7.6-7.8) converges 

to the exact solution by using HPM. 

 

Proof:   

(I) For Eq. (7.6) 

We set,  

                  



n

i

in txntx
1

,,  

                  




 
1

1

1 ,,
n

i

in txntx    

So,  

           nnnnn ntxtx   ,,1  

                                     nn                                          

  





























1

0 0 0

2

1

2

1

0

11

2

1

2

).(
m

k

t t

mk

mk

t

mkmkkm dt
x

f
ndt

x

f

x

n
dt

x

n
dn     

 



112 

 

Thus 

       








 
00

1 1,,
n

n

n

nn xfmtxtx   

Since 10  , therefore    txntxnn
n

,,lim 
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(III) For Eq.(7.8) 
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7.6   Numerical experiment 

 

In this section, we compute numerically Eqs.(7.6 – 7.8) by the ADM and HPM methods.  
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7.6.1 ADM method 

From the ADM formula Eq.(7.29), we can obtain the first three terms of the Adomian 

polynomials: 
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By the recursive formula in Eqs. (7.30 – 7.32), we can obtain directly the components of 

ni, fi and mi (see Appendix C) 

 

From Eq. (7.30): 
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From Eq. (7.31) 



2

2

1
1

x

o ef



                                                                                                              

(7.63) 



t

dAf
0

0,31 
 




22

22

1
1

xx

e
t

e


















                                                                                                           

(7.64)
 

  





2
2

2

22

2
22

21
42

1
1

x

m

xx

e
t

xdeef









































                                           

(7.65) 

 

From Eq. (7.32) 
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7.7.2  HPM method 

Following the HPM method, we can obtain the first three terms of He polynomials. 

From Eqs. (7.48 – 7.49): 
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From Eq. (7.49): 
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From Eq. (7.50): 
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It is obvious that the first three terms approximate solutions (Eqs. (7.60 – 7.68)) obtained 

using ADM are the same as the first four terms (Eqs. (7.69 – 7.77)) of the HPM.  
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Figure 7.1. The ratio convergence test applied to the series coefficients (tumour) for 

ADM and HPM as a function of the number of terms in series. 
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Figure 7.2. The ratio convergence test applied to the series coefficients (ECM) for ADM 

and HPM as a function of the number of terms in series. 
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Figure 7.3. The ratio convergence test applied to the series coefficients (MDE) for ADM 

and HPM as a function of the number of terms in series. 

 

ADM and HPM provide analytical solution in terms of an infinite power series (see Eqs. 

(7.25 – 7.27) for ADM and Eqs. (7.42 – 7.44) for HPM). The series consists of both 

positive and negative terms, although not in a regular alternating fashion. The ratio test 

was applied to the absolute values of the series coefficient. This provides a sufficient 

condition for convergence of the series for a space interval X  in the form  
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However, the approach in this study was to replace Eq. (7.78) with  
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m
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Mm 
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                                            (7.79)   

where M is a large constant. The behavior of the function f(m) = |am+1 /am| for increasing 

values of m was then observed as presented in Figures (7.1 – 7.3). It is clear from these 

figures that the ratio f(m) decays as m increases, obviously indicating that the series is 

convergent.  

Figures (7.4 – 7.7) show four snapshots in time of the tumour cell density, ECM density 

and MDE concentration. The ECM profile shows clearly the degradation by the MDEs. 

As the MDEs degrade the ECM, the tumour cells invade via combination of diffusion and 

haptotaxis. 
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Figure 7.4.  One dimensional ADM and HPM solution of the system (7.6 – 7.8) with 

constant tumour cell diffusion showing the cell density, MDE concentration and ECM 

density at t = 0. 
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Figure 7.5.  One dimensional ADM and HPM solution of the system (7.6 – 7.8) with 

constant tumour cell diffusion showing the cell density, MDE concentration and ECM 

density at t = 1. 
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Figure 7.6.  One dimensional ADM and HPM solution of the system (7.6 – 7.8) with 

constant tumour cell diffusion showing the cell density, MDE concentration and ECM 

density at t = 10. 
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Figure 7.7.  One dimensional ADM and HPM solution of the system (7.6 – 7.8) with 

constant tumour cell diffusion showing the cell density, MDE concentration and ECM 

density at t = 20. 
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7.7  Summary 

In this chapter, we have modeled in a simple but effective manner using ADM and HPM. 

The solutions obtained are in convergent series form with easily computable terms. 

Comparison with the decomposition method shows that the homotopy perturbation 

method is a promising tool for finding approximate analytical solutions to strongly 

nonlinear problems since HPM does not involve the Adomian polynomials. Our results 

are in a good agreement with other models which being numerically solved.  
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